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Executive Summary

This consultancy is part of an investigation into hydrological issues relating to the water
management system proposed for the Jabiluka mine site. The report has been prepared for the
Supervising Scientist at Jabiru.

The objective of this consultancy is to estimate the storage capacity required to store surface
runoff and other water within the total containment zone (TCZ) of the Jabiluka project, for
various probabilities of exceedance. The consideration here is for a 241 400 m2 TCZ area, of
which 90 000 m2 is the water storage area. This relates to the Kinhill-ERA storage capacity
calculations reported in the Jabiluka Public Environment Report Appendix B1. For the
calculations, we assume that the bunds and other drainage diversion structures can effectively
prevent all water outside the TCZ from entering the TCZ and vice-versa.

The main inflows into the storage are surface runoff and mine dewatering inflows. The main
losses from the storage are evaporation, water disposal through the underground ventilation
system and water used for milling and other mining operations.

To estimate the storage capacity, 50 000 sets of 30 years of daily rainfall and monthly pan
evaporation data are stochastically generated to simulate the storage water balance on a daily
time step. This approach thus mimics 50 000 possibilities in the climate for a 30-year mining
operation (a total of 1.5 million years), assuming stationarity in the climate.

The approach used here to estimate the storage capacity is significantly different from the
approach used by Kinhill-ERA. The main limitation in the Kinhill-ERA approach is that,
with their constructed extreme rainfall sequence, a probability of exceedance cannot be
directly attributed to the derived storage capacity. There are also several differences in the
water balance and modelling considerations in the two approaches. Unlike the Kinhill-ERA
method, the approach used here simulates the storage water balance on a daily time step,
considers the inter-annual variability in evaporation and the inverse relationship between
evaporation and rainfall, uses more conservative pan coefficients, takes into account the
lower ventilation loss in the Wet season, and allows the monthly distribution of annual
rainfall to change from year to year.

Based on the 50 000 sets of daily storage water balance simulations, a storage capacity of
939 000 m3 (an equivalent depth of 10.4 m in the 90 000 m2 storage area) is required so that
there is only a 0.01% probability of the storage being exceeded over a 30 year mine life. The
estimate derived in the Kinhill-ERA simulations is 25% smaller (706 000 m3), and based on
the simulations here, has a 0.6% probability of exceedance. The final Kinhill-ERA
recommended storage capacity is 810 000 m3 and this has a 0.08% probability of being
exceeded in the 30-year mine life.

The analyses also indicate that any exceedance of the design volume will most likely occur in
the first few years of the mining operation. This is because the typical evaporation and water
usage from the storage in the later years are significantly greater than the typical inflows into
the storage. It should be noted that the simulation results are based on the assumption that the
water usage (particularly the volumes associated with the mill requirement and ventilation
loss) specified in the Jabiluka PER is achievable.
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1  Introduction

The report is prepared for the Supervising Scientist at Jabiru. It describes part of an
investigation into hydrological issues relating to the water management system proposed for
the Jabiluka project.

Specifically, the objective is to estimate the water storage capacity required to store surface
runoff and other water within the total containment zone (TCZ) of the Jabiluka project. The
water storage volume is calculated for a range of probabilities up to 0.002% that the pond
design volume would be exceeded over a 30-year mine life. In this study, 50 000 sets of
30 years of daily rainfall and monthly pan evaporation data are stochastically generated to
simulate the storage water balance.

The approach used by Kinhill and Energy Resource Australia (ERA) is reviewed and the
pond design compared with the estimates derived here. The Kinhill-ERA approach is
described in The Jabiluka Mill Alternative Public Environment Report and The Jabiluka Mill
Alternative Public Environment Report Technical Appendices (hereon referred to as Jabiluka
PER Appendices) (1998). The two reports also provide background to many other issues.

The structural design of the storage and other features of the mine site are not considered
here. This study also assumes that the bunds and other drainage diversion structures will
prevent all water outside the TCZ from entering the TCZ and vice versa.

The storage water balance components are discussed in section 2. Some of the water inflows
into the storage and losses from the storage are discussed in detail, while elsewhere, the
values used by Kinhill-ERA are adopted. Section 3 describes the selection of the climate
stations used here, the rainfall and pan evaporation characteristics in the area and the
stochastic generation of 1.5 million years of daily rainfall and monthly pan evaporation data.
Section 4 describes the approach used to estimate the storage capacity, and presents the
storage capacity estimates for various probabilities of exceedance of the design volume in the
30-year mine life. Section 5 reviews the storage water balance simulations carried out here
and the Kinhill-ERA simulations. The differences between the two approaches, and the
effects of the various parameters on the storage water balance are discussed.

2  Storage water balance components

The consideration here is for a 241 400 m2 TCZ area, of which 90 000 m2 is the water storage
area. This relates to Appendix B1 of the Jabiluka PER Appendices report.

The annual volumes of water inflows into the storage and losses from the storage are
summarised in tables 2.1 and 2.2 respectively (see also tables B1.3 and B1.4 in the Jabiluka
PER Appendices). The results are dependent mainly on the water balance considerations, and
the values adopted in the tables are discussed below.

Table 2.1  Inflows into the storage

Source Area (m2) Annual volume (m3)

Runoff
     Ore and waste stockpile
     Hardstand area
     Mill/mine
     Pond

11 000
33 500
106 900
90 000

60% of rainfall
95% of rainfall
80% of rainfall
100% of rainfall

Mine dewatering and contaminated laundry 73 365
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All the calculations throughout this report assume a water year that starts in September, to
ensure that consecutive wet summer months are taken into account.

Table 2.2  Losses from the storage (annual volumes in m3)

Year
1

Year
2

Year
3

Year
4

Year
5

Year
6

Year
7

Year
8

Year
9

Year
10

Year
11–30

Evaporation see Section 2.3

Mill requirement 0 180000

Ore wetdown and plant
washdown

800 1200 3500 7000 10000

Mine ventilation and
dust suppression

0 15000 30000 45000 60000 75000 90000

2.1  Runoff

There are four types of TCZ catchment land use — an area to store ore and hold the waste
stockpile, a hardstand area, a mill/mine area and the pond area. The runoff coefficients used
in the Jabiluka PER Appendices are very conservative and are adopted here (see table 2.1).
Adopting these values, almost 90% of the rainfall falling onto the TCZ becomes runoff.

A simple conceptual water balance model (see fig 2.1) is used here to simulate the rainfall-
runoff process. The soil water storage capacity (Scap in fig 2.1) is the only parameter in the
model, and this is optimised such that the total runoff is the same as that estimated using the
above runoff coefficients. Although the total estimated runoff is the same, the model allows
for higher runoff coefficients during wet periods because the soil is closer to saturation.
Rainfall data from Oenpelli and evaporation data from Jabiru (see section 3) between
September 1972 and August 1998 are used to optimise the soil water capacity in the model.
The resulting soil capacities for the oil/waste stockpile, hardstand and mill/mine areas are
8.7, 0.75 and 3.6 mm respectively. These small soil water capacities reflect the conservative
considerations in estimating runoff.

Scap

soil storage, S

surface runoff

rainfall

evaporation  = lesser of {                                  , PET}S
Scap

x 10 mm/day 

(PET is potential evapotranspiration
estimated as pan evaporation x pan factor)

Figure 2.1  Daily conceptual soil water balance model used to simulate runoff
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2.2  Mine dewatering and contaminated laundry

The mine dewatering represents water inflows into the mine that will be collected in a sump
and pumped into the storage. The value in table B1.3 of the Jabiluka PER Appendices is used
(73 000 m3/year). The bottom of page B1–7 and the top of page B1–8 in the PER Appendices
discuss some of the problems that can arise from using this value. The volume of
contaminated laundry (365 m3/year) is negligible compared to all the other variables. The
mine dewatering and contaminated laundry are simulated by adding a constant daily volume
of 201 m3 into the storage (73 365 m3/year).

2.3  Evaporation from the storage

The approach used by Kinhill-ERA for estimating pond evaporation at Jabiluka is described
in the PER Appendix B1 (page B1–8). Kinhill-ERA used the long-term (1972–1997)
averages of monthly pan evaporation, together with monthly pan evaporation coefficients
recommended by Hatton (1997).

Inter-annual variability of evaporation and inverse relationship between evaporation
and rainfall
The inter-annual variability of evaporation is not accounted for by Kinhill-ERA. The standard
deviation of annual pan evaporation (based on September 1971 to August 1998 Jabiru data) is
122 mm. Using the average pan coefficient of 0.77 recommended by Hatton (1997), the
standard deviation of the storage evaporation is 94 mm. This is smaller than the standard
deviation of annual rainfall (293 mm, based on 1911–1998 data at Oenpelli).

In terms of the water balance, rainfall applies to the whole TCZ, while evaporation from the
storage covers an area which is only 37% of the TCZ area. The inter-annual variability of
evaporation will therefore have a smaller impact on the water balance than inter-annual
variability of rainfall.

The correlation between evaporation and rainfall is not accounted for by Kinhill-ERA. The
correlation coefficient of annual pan evaporation and annual rainfall at Jabiluka is -0.43
(based on 27 years of data — see section 3.2), which is statistically different from zero at a
significance level of p=0.025. This inverse relationship between evaporation and rainfall
means that the pond storage needs to be larger than if the inverse relationship is not
considered.

Both the inter-annual variability and the inverse relationship between evaporation and rainfall
are taken into account in the simulations carried out here.

Pan coefficients
The pan coefficients recommended by Hatton (1997) for the Ranger mine were adopted by
Kinhill-ERA for the storage water balance simulations reported in the Jabiluka PER
Appendices. Hatton derived these coefficients after examining mainly the work by McQuade
(1993). The final coefficients were set equal to those given by Vardavas (1987) except for
April and October where Hatton used higher pan factors.

To examine whether the pan coefficients are appropriate, the average monthly evaporation
rates (using Jabiru data from September 1971 to August 1998) derived using these
coefficients (average monthly pan evaporation times the pan factors) are compared with point
potential evapotranspiration (PPE) and areal potential evapotranspiration (APE) estimates.
The PPE and APE estimates are extracted from the digital maps of evapotranspiration of
Australia prepared by the Cooperative Research Centre for Catchment Hydrology (Wang et al
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1999). In simple terms, the PPE is the rate of evapotranspiration from a small wet area in an
existing environment, while APE is the rate of evapotranspiration if a large area is well
watered. The Jabiluka storage evaporation rate is expected to be somewhere between the PPE
and APE, and closer to APE during the wet season than during the dry season due to less
advective energy in the wet season.

The comparison in figure 2.2 indicates that the estimated monthly storage evaporation rates
(using Hatton’s pan factors) are generally reasonable. For February and March, the estimated
storage evaporation rates are lower than the APE. This could be due to errors in the recorded
pan evaporation (because of the difficulty in accurately estimating pan evaporation when
rainfall is high) or errors in the APE estimates.

The plots in figure 2.2 also suggest that the pan coefficients for April and October may be
high. These were the two months where Hatton used higher pan coefficients compared to the
coefficients given by Vardavas. Figure 2.3 shows the evaporation rates calculated using
Vardavas’ original pan coefficients, and they appear to be in more realistic agreement with
the seasonal pattern of the APE and PPE, compared to the rates calculated using Hatton’s
factors for October and April.
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Figure 2.2  Comparison of average monthly storage evaporation estimates, pan evaporation
rates and point potential and areal potential evapotranspiration rates (storage

evaporation estimated using Hatton’s pan coefficients)

The pan coefficients of Vardavas are used here (see fig 2.3 and table 2.3). This results in on
average, about 16 mm (1450 m3) and 26 mm (2350 m3) less evaporation from the storage in
October and April respectively.

The use of climate data to compute evapotranspiration using Penman’s combination equation
is not investigated here. In any case, both the APE and PPE maps are derived from
evapotranspiration rates estimated for a large number of climate stations throughout Australia
(Wang et al 1999). The APE and PPE estimates are derived from climate data (solar
radiation, temperature and vapour pressure deficit) using Morton’s (1983) energy method.
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Figure 2.3  Comparison of average monthly storage evaporation estimates and point
potential and areal potential evapotranspiration rates (storage evaporation

estimated using Vardavas’ pan coefficients)

Table 2.3  Pan coefficients used here to estimate evaporation from the storage

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

0.66 0.66 0.75 0.84 0.92 0.92 0.95 0.77 0.70 0.70 0.66 0.64

Effect of salinity buildup on storage evaporation
The water salinity in the storage will have a negligible effect on the evaporation rates. There
will not be any substantial buildup of salinity in the storage because of the continual inflow
of surface runoff replacing the water drawn from the storage for milling and other mining
operations. In any case, the salinity would have to approach 20% by weight before significant
reduction in evaporation can be expected (Hatton 1997).

2.4  Mill requirement

From the second year of the mining operation onwards, an annual volume of 180 000 m3

(493 m3/day) will be consumed by the mill. This value is given in table B1.3 of the PER
Appendices and is used here.

2.5  Ore wetdown and plant washdown

The value adopted by Kinhill-ERA is also used here (see table 2.2). This varies from a
volume of 800 m3 in the first year of the mining operation to 10 000 m3 from year 12
onwards. This volume is relatively small compared to the other variables.
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2.6  Mine ventilation and dust suppression

As the mine develops, a significant loss of water will occur in the underground ventilation
system. Air passing through the underground workings and stopes will evaporate free water
which will be subsequently discharged via the ventilation exhaust system. The annual
ventilation loss volumes used by Kinhill-ERA are adopted here (as agreed in the consultancy
brief). The volumes vary from 15 000 m3 in the second year of mining operation to 90 000 m3

from year 7 onwards (see table 2.2). The ventilation loss is a significant component of the
water balance, and the values used by Kinhill-ERA have been questioned by Wasson et al
(1998). This aspect is not investigated here.

In the Kinhill-ERA storage water balance simulations, a constant ventilation loss is assumed
through the year. However, the evaporation potential through the ventilation system is greater
in the dry season than the wet season because of the greater moisture deficit in the dry
season. This is taken into account here by attributing 16% of the total water disposal from the
ventilation system to the four wettest months (December to March) and the remaining 84% to
the other months (see table 2.4), as suggested in the Jabiluka PER Appendices (middle of
page B1–9).

Table 2.4  Distribution of annual water disposal through the ventilation system through the year

Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug

11% 11% 9% 4% 4% 4% 4% 9% 11% 11% 11% 11%

3  Rainfall, pan evaporation and data generation

3.1  Rainfall

There are two rainfall stations close to the Jabiluka site with good records, at Jabiru (15 km
south of the Jabiluka site) and at Oenpelli (25 km north-east). The data at Jabiru extends from
1971 to 1998 and the data at Oenpelli covers the period from 1911 to 1998. The complete set
of daily records at Jabiru were obtained from ERA. The Oenpelli daily rainfall data were
obtained from the National Climate Centre (Bureau of Meteorology). There were very few
missing records, and these were infilled by the Hydrology Section of the Bureau of
Meteorology (Bruce Stewart, pers comm).

The Jabiru and Oenpelli rainfall are compared below using concurrent data between
September 1971 and August 1998. Figure 3.1 shows that the rainfall distribution through the
year is similar at the two locations, although the rainfall is slightly higher in Oenpelli in the
wetter months. The plots in figures 3.2 and 3.3 also indicate that the annual and monthly
rainfall at the two locations are relatively similar. The correlation of annual rainfall (Sep–
Aug) at the two locations is 0.67, and the correlations of monthly rainfall are 0.92, 0.79, 0.92
and 0.65 in spring (Sep–Nov), summer (Dec–Feb), autumn (Mar–May) and winter (Jun–Aug)
respectively. The duration plot in figure 3.4 also indicates that the daily rainfall
characteristics at the two locations are similar.

The mean annual rainfall over this period (1971–1998) is 1500 mm at Oenpelli and 1480 mm
at Jabiru. This average rainfall over this period is higher than the 1911 to 1998 average
(1400 mm). As the rainfall data at the two locations are relatively the same, the rainfall data
at Oenpelli between 1911–1998 will be used in the analyses, because it has a much longer
record.
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Figure 3.1  Mean monthly precipitation at Jabiru and Oenpelli
(data from September 1971 to August 1998)
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Figure 3.2  Comparison of annual rainfall at Jabiru and Oenpelli
(data from September 1971 to August 1998)
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Figure 3.3  Comparison of monthly rainfall at Jabiru and Oenpelli
(data from September 1971 to August 1998)
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Figure 3.4  Comparison of daily rainfall characteristics at Jabiru and Oenpelli
(data from September 1971 to August 1998)
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3.2  Relationship between pan evaporation and precipitation

There is a fairly strong inverse relationship between the pan evaporation and rainfall data. The
plots in figure 3.5 show the relationship between annual pan evaporation and rainfall and the
relationships between monthly pan evaporation and rainfall over the four seasons. Pan
evaporation data at Jabiru and rainfall data at Oenpelli between September 1971 and August
1998 are used here. The evaporation data at Jabiru were obtained from ERA. There were very
few missing records (2%) and these were infilled by relating the values at Jabiru to those at
Darwin.

The pan evaporation-rainfall correlations for Oenpelli rainfall versus Jabiru evaporation and
for Jabiru rainfall versus Jabiru evaporation are similar (see table 3.1). This is expected
because the rainfall characteristics at Jabiru and Oenpelli are similar.

Table 3.1  Correlation between annual pan evaporation and rainfall and between monthly pan
evaporation and rainfall for the four seasons at various locations

Jabiru ET

versus

Oenpelli rain

(1972–1998)

Jabiru ET

Versus

Jabiru rain

(1972–1998)

Maningrida ET

versus

Maningrida rain

(1967–1998)

Middle Point ET

versus

Middle Point rain

(1965–1997)

Darwin ET

versus

Darwin rain

(1958–1997)

Annual - 0.43 - 0.43 - 0.19 - 0.33 + 0.33

Spring - 0.57 - 0.55 - 0.05 - 0.56 - 0.32

Summer - 0.62 - 0.47 - 0.28 - 0.48 - 0.34

Autumn - 0.71 - 0.71 - 0.34 - 0.48 - 0.54

Winter - 0.20 - 0.24 - 0.16 - 0.12 + 0.08

Table 3.1 also shows the correlations between annual and monthly pan evaporation and
rainfall at the next three closest locations to the Jabiluka site where there are both pan
evaporation and rainfall data. All the data were obtained from the National Climate Centre.
All three stations are located close to the coast. Maningrida is about 150 km north-east,
Middle Point is about 150 km west and Darwin is about 250 km west of the Jabiluka site.
Table 3.1 indicates that the inverse relationship between evaporation and rainfall is strongest
at Jabiru.

In summary, the daily rainfall data at Oenpelli (September 1911 to August 1998) and monthly
pan evaporation data at Jabiru (September 1971–August 1998) are used here. The inverse
relationship between pan evaporation and rainfall is statistically significant (at p=0.025 for
the annual values) and this is taken into account in generating the data. Figure 3.6 shows the
distribution of monthly rainfall at Oenpelli and pan evaporation at Jabiru through the year.
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Figure 3.6  Mean monthly precipitation at Oenpelli and pan evaporation at
Jabiru (data from September 1971 to August 1998)

3.3  Stochastic generation of daily rainfall data

The DMM (daily-monthly-mixed) algorithm (Wang & Nathan 1999) described in Appendix
A is used to generate daily rainfall data. The advantages of this algorithm are that it has a
small number of parameters (six for each month) and is capable of reproducing key
characteristic statistics simultaneously at the daily, monthly and annual time periods. The six
parameters for each month are estimated from

• the transitional probability of a wet day following a wet day

• the transitional probability of a wet day following a dry day

• the mean rainfall depth in a wet day

• the standard deviation of rainfall depth in a wet day

• the standard deviation of monthly rainfall

• the lag-1 autocorrelation of monthly rainfall.

 The Oenpelli daily rainfall record (1911–1998) is used here to obtain these parameters. To
evaluate the DMM algorithm for this site, statistics from 1000 years of generated daily
rainfall data are compared with the statistics for the observed data. Table 3.2 summarises
some of the daily statistics. The table shows that the generated data closely reproduce the
observed statistics, including the skewness which is not used in the model fitting.

The monthly statistics are given in table 3.3. The monthly means are closely reproduced
except for April, where there is a small difference. The coefficients of variation (standard
deviation divided by the mean) are closely reproduced for the wet months. The difference
between the observed and simulated coefficients of variation for the dry season will have
little effect on the storage water balance simulations because of the small rainfall. In fact, the
difference is caused by the small rainfall, because the coefficient of variation is highly
sensitive to small deviations from the mean when the mean is small. The skewness, which is
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not used in model fitting, is reasonably reproduced in the generated data for the wet months.
The difference in skewness for the dry months is again of little consequence because of the
small rainfall.

The annual statistics are given in table 3.4. The mean and the coefficient of variation are
almost exactly reproduced. A small positive skewness is produced in the generated data while
the observed skewness is almost zero.

Table 3.2  Comparison of key daily rainfall statistics in the generated and observed data

Mean (mm) CV Skewness

Observed Simulated Observed Simulated Observed Simulated

All data 3.82 3.81 3.02 3.05 5.52 5.52

Jan 10.90 10.95 1.66 1.69 3.28 3.28

Feb 11.33 11.26 1.58 1.60 3.15 3.14

Mar 9.00 9.01 1.90 1.92 3.58 3.58

Apr 2.60 2.63 3.79 3.89 8.02 8.00

May 0.46 0.44 8.08 7.13 12.16 12.15

Jun 0.05 0.04 16.99 16.94 31.60 31.64

Jul 0.08 0.06 20.55 16.15 25.76 25.79

Aug 0.03 0.01 20.79 23.01 40.85 40.10

Sep 0.16 0.11 11.12 12.00 21.52 21.48

Oct 0.86 0.84 5.92 5.37 12.18 12.13

Nov 3.60 3.59 2.68 2.70 4.96 4.96

Dec 7.19 7.21 2.02 2.02 3.65 3.66

 

Table 3.3  Comparison of key monthly rainfall statistics in the generated and observed data

Mean (mm) CV Skewness

Observed Simulated Observed Simulated Observed Simulated

All data 116.4 116.1 1.31 1.31 1.39 1.36

Jan 337.9 335.2 0.39 0.38 1.11 0.70

Feb 320.2 317.2 0.42 0.42 0.97 0.68

Mar 278.9 281.8 0.50 0.50 0.47 0.83

Apr 77.9 87.1 1.12 1.00 2.03 1.79

May 14.3 15.9 2.04 1.99 3.66 3.14

Jun 1.6 1.7 3.84 4.31 5.15 8.08

Jul 2.4 1.7 3.91 4.65 4.78 6.85

Aug 0.8 0.4 3.69 5.59 4.40 9.92

Sep 4.7 3.2 2.28 3.47 3.66 6.27

Oct 26.7 25.4 1.31 1.33 1.63 2.81

Nov 108.0 104.7 0.65 0.64 1.26 0.98

Dec 222.8 218.6 0.45 0.44 1.16 0.74
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Table 3.4  Comparison of key annual rainfall statistics in the generated and observed data

Mean (mm) CV Skewness

Observed Simulated Observed Simulated Observed Simulated

1394 1393 0.21 0.21 0.00 0.37

The DMM algorithm is used to generate 1.5 million years of daily rainfall data for the storage
water balance simulations. Figure 3.7 shows the frequency curve of the annual rainfall for the
1.5 million years of generated data. The 1 in 10 000 year annual rainfall is 2702 mm. The
estimate of 1 in 10 000 year annual rainfall by the Bureau of Meteorology is 2460 mm with a
standard deviation of 85 mm. Although our estimate of 2702 mm is almost three standard
deviations higher than the estimate of 2460 mm by the Bureau of Meteorology, the standard
deviation given by the Bureau accounts for only sampling error but not for possible model
error in extrapolating from 88 years of recorded data to the 10 000 year return period. Our
model is implicit in the DMM algorithm, while the Bureau assumed a normal distribution for
the annual rainfall, resulting in the difference in the estimates. Given the large uncertainty in
modelling the extrapolation to a 10 000 year return period, it is not possible to judge which of
the two estimates is more appropriate.
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Figure 3.7  Frequency curve of annual rainfall based on 1.5 million years of generated data

3.4  Stochastic generation of monthly pan evaporation data

 A simple algorithm is used here to generate monthly pan evaporation data. The daily
variation in evaporation within a given month is not considered necessary in the water
balance simulation. The monthly pan evaporation data generation algorithm is described in
Appendix B. The following monthly statistics are used in the model fitting
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• mean of monthly evaporation

• standard deviation of monthly evaporation

• lag-1 autocorrelation of monthly evaporation

• lag-2 autocorrelation of monthly evaporation

• cross correlation between monthly evaporation and monthly rainfall

The Jabiru pan evaporation data (September 1971 to August 1998) are used to obtain the
model parameters. To evaluate the algorithm for this site, statistics from 1000 years of
generated monthly pan evaporation are compared with the statistics from the observed data.
Tables 3.5 and 3.6 summarise the monthly and annual statistics respectively. The generated
data closely reproduce the observed mean and coefficients of variation, for all the monthly
and annual values. The skewness is not well reproduced because of the large uncertainties in
the skewness estimated from only 27 years of observed data. This is reflected in the irregular
fluctuation of skewness from month to month. In any case, the skewness in the data is not
important because of the relatively small coefficients of variation.

The cross correlation between the generated annual pan evaporation and rainfall is -0.41.
This is in close agreement with the observed cross correlation of -0.43.

Table 3.5  Comparison of key monthly pan evaporation statistics in the generated and observed data

Mean (mm) CV Skewness

Observed Simulated Observed Simulated Observed Simulated

All data 218 219 0.20 0.19 0.29 0.27

Jan 184 186 0.13 0.12 -0.11 0.01

Feb 156 151 0.15 0.13 0.10 -0.13

Mar 175 175 0.11 0.12 0.61 -0.06

Apr 203 204 0.11 0.11 0.11 -0.20

May 216 216 0.07 0.07 -0.22 -0.41

Jun 204 205 0.07 0.07 0.65 -0.06

Jul 216 216 0.08 0.08 0.72 -0.09

Aug 247 247 0.07 0.07 0.19 -0.03

Sep 268 268 0.08 0.08 1.02 -0.12

Oct 288 287 0.10 0.10 0.59 -0.44

Nov 244 246 0.11 0.11 -0.05 -0.07

Dec 212 214 0.12 0.12 -0.18 -0.11

Table 3.6  Comparison of key annual pan evaporation statistics in the generated and observed data

Mean (mm) CV Skewness

Observed Simulated Observed Simulated Observed Simulated

2615 2617 0.05 0.04 0.77 -0.13
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4  Estimation of storage capacity

4.1  Storage water balance

The equation below describes a daily simulation of the storage water balance

St+1 = St + Inflows - Losses

where St is the present storage and St+1 is storage on the following day. The inflows into
(runoff and mine dewatering) and losses from the storage (evaporation, mill requirement, ore
wetdown and ventilation loss) are described in section 2. All the losses in table 2.2 are
subtracted from the storage as long as there is water in the storage.

Fifty thousand runs are carried out here, with each run simulating the daily storage water
balance over a 30-year mine life, starting with an empty storage. The largest storage level in
each run gives an estimate of the storage capacity required such that the storage volume will
not be exceeded in that run. The largest of these 50 000 values is therefore the estimate of the
storage capacity with a 0.00002 (1/50000) probability of being exceeded during the 30-year
mine life, the tenth largest of these values is the estimate of the storage capacity with a
0.0002 (or 0.02%) probability of being exceeded in the 30-year mine life, and so on.
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Figure 4.1  Estimated storage capacities for various probabilities of exceedance

Figure 4.1 shows the estimates of storage capacity for various probabilities of exceedance of
the design volume. Based on these simulations, the estimate of storage capacity with a 0.01%
probability (1 in 10 000) of being exceeded in the 30-year mine life is 939 000 m3 (an
equivalent depth of 10.4 m in the 90 000 m2 storage area). Figure 4.1 also indicates that the
maximum pond storage volume of 706 000 m3 estimated in the Kinhill-ERA simulations
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(page B1–10 and table B8 of the Jabiluka PER Appendices) has a 0.6% probability of being
exceeded. The final Kinhill-ERA recommended storage of 810 000 m3 (based on a 9.0 m
depth for the 9 ha pond, see page 4–52 of the PER report) has a 0.08% probability of being
exceeded in the 30-year mine life.

5  Discussion of storage water balance simulations

In this section we review the storage water balance simulations carried out here and the
Kinhill-ERA simulations described in the Jabiluka PER Appendices. The differences
between the two approaches, and the effects of the various parameters on the storage water
balance are discussed.

5.1  A typical simulation run

The plots in figure 5.1 show results from a simulation run using the approach described in
section 4 and the water balance considerations described in section 2. The simulation is
carried out for 26 years using observed daily rainfall data at Oenpelli and observed pan
evaporation data at Jabiru between September 1972 and August 1998. The plots show the
annual rainfall and the storage volume at the end of each month of the simulation.

The plot shows that the biggest storage in the simulation is 594 000 m3, and to prevent the
storage design volume from being exceeded in this 26-year run, a storage capacity of
594 000 m3 is therefore required. The plot also shows the seasonal fluctuation in the storage
volume, with the volumes being highest at the end of the wet season (around March or April).

In this simulation, the biggest storage occurred in the fifth year. The storage design volume is
most likely to be exceeded in the first few years of the simulations, because of the lower
water usage in the first few years compared to the later years. After the tenth year, about
456 000 m3/year can be extracted from the storage (mill water use is 180 000 m3/year,
ventilation loss is 90 000 m3/year, ore wetdown/plant washdown is 10 000 m3/year and
average evaporation in this simulation is 176 000 m3/year), compared to about
392 365 m3/year of inflows into the storage (mine dewatering/contaminated laundry is
73 365 m3/year and average runoff in this simulation is 319 000 m3/year). It should be noted
that because the high water usage is likely to prevent the storage from being exceeded in the
later years in the simulations, it must be ensured that this high water usage can be sustained
during the actual mining operation (particularly the volumes associated with the mill
requirement and the ventilation loss).

5.2  The approach adopted here versus Kinhill-ERA approach

There are several differences between this approach and the approach used by Kinhill-ERA
(described in Appendix B1 in the Jabiluka PER Appendices) to estimate the storage capacity.
In the Kinhill-ERA approach, 10 000 years of annual rainfall data were first generated, using
a log-normal distribution (the 1 in 10 000 years annual rainfall estimated by Kinhill-ERA is
similar to the estimate here, see section 3.3). A 15-year storage water balance simulation was
carried out using a typical 15-year sequence as the base data. Ten simulations were carried
out - with the first year of the base data replaced with the wettest of the 10 000 years of the
generated rainfall, with the first two years of the base data replaced with the wettest two-year
sequence, with the first three years replaced with the wettest three-year sequence, up to the
first ten years replaced with the wettest ten-year sequence. The simulations were carried out
on a monthly time step, with the annual rainfall data distributed over the 12 months using the
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same monthly factors for all years of simulations (see table B1.1 in the Jabiluka PER
Appendices). Mean monthly storage evaporation rates were used for the simulations
(calculated using Hatton’s (1997) pan coefficients times the mean monthly pan evaporation).
Except for the ventilation loss, the other water use considerations were similar to those used
here.
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Figure 5.1  Annual rainfall (September–August) and storage levels for a simulation using rainfall
data at Oenpelli and evaporation data at Jabiru (September 1972 to August 1998)

The Kinhill-ERA simulation of a 15-year storage water balance instead of a 30-year storage
water balance is to a large extent reasonable because the storage is most likely to be
overtopped in the first few years (as explained in section 5.1). This is probably also the
reason why Kinhill-ERA replaced the first years of the base data with the wettest sequence to
mimic the extreme wet conditions. However, it is not possible to attribute directly a
probability of overtopping to the storage capacity derived by Kinhill-ERA. In fact, the
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Kinhill-ERA storage capacity estimate has a probability of exceedance greater than 0.01% for
two reasons. First, a wet sequence starting several years after the mining began (for example,
in the fifth year of the simulation like in fig 5.1) could result in a bigger storage requirement
compared to the wet sequence starting from the first year of mining itself. Second, the
Kinhill-ERA approach assumes that typical/average rainfall sequences follow the extreme
sequence of wet years, while in reality, the annual rainfalls following the extreme sequence
of wet years could be higher than average.

5.3  Sensitivity analyses

It is difficult to directly compare the Kinhill-ERA approach with the approach used here.
Therefore in this section we investigate the sensitivity of the differences in the water balance
components and the modelling time step between the two approaches.

The simulations carried out for this section utilised the same 26 years of observed data used
in section 5.1 (rainfall at Oenpelli and pan evaporation at Jabiru between September 1972
and August 1998). Six storage water balance simulations are carried out using a monthly time
step and three simulations are carried out on a daily time step. The biggest storage in each of
the nine simulations (which is the storage capacity required to prevent overtopping in the 26-
year run) are tabulated in table 5.1 and the results are discussed below. The average annual
inflows into and losses from the storage over the 26 years in all the nine simulations are the
same, except Runs 5 and 6 which have higher evaporation because of the use of higher pan
evaporation coefficients in two months. These simulations therefore investigate how the
different considerations affect the estimate of the storage capacity. It should be noted that
these simulations only provide some indication of the sensitivity of the storage capacity
estimate to various parameters, and the results can be different under extreme conditions.
Ideally this investigation should be based on simulations using a long data sequence (as in
section 4), but was not possible to do this because of the very high computational
requirement.

Interannual variability in evaporation and inverse relationship between evaporation and
rainfall
Runs 1 and 2 are the same except for the use of pan evaporation data. Run 1 uses the actual
monthly pan evaporation data while in Run 2, the mean monthly pan evaporation rates,
averaged over the 26 years, are used. Run 1 therefore takes into account the interannual
variability in evaporation and the inverse relationship between evaporation and rainfall (as is
done here), while Run 2 does not (as in the Kinhill-ERA approach). Table 5.1 indicates that
for this 26-year run, a 3% higher storage capacity is required when the interannual variability
in evaporation and the inverse relationship between evaporation and rainfall are taken into
account compared to when they are not.

Actual rainfall versus monthly distribution of annual rainfall
Runs 1 and 3 differ only in the use of rainfall data. Run 1 uses the actual monthly rainfall
data, while in Run 3, the annual rainfall is distributed over the 12 months using the monthly
factors in table B1.1 in the Jabiluka PER Appendices. The use of the actual monthly rainfall
data would give a higher storage capacity estimate because the rainfall in some months can
be significantly greater than the monthly rainfall calculated as a proportion of the annual
rainfall using a typical distribution through the year. The biggest storage in this 26-year run is
1.7% greater when the actual rainfall data is used compared to when a typical distribution is
used to proportion the annual rainfall to the months.
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Table 5.1  Biggest storages in the sensitivity analyses simulations

Rainfall data Pan evaporation data Ventilation loss Runoff estimation Biggest
storage (m3)

Monthly simulation

1 Actual data Actual data Same for each month Runoff coefficient 582 944

2 Actual data Long-term monthly
average

Same for each month Runoff coefficient 565 939

3 Fixed distribution of
annual rainfall

Actual data Same for each month Runoff coefficient 573 145

4 Actual data Actual data Lower in wet season Runoff coefficient 589 744

5 Actual data Actual data (Hatton’s
pan factor)

Same for each month Runoff coefficient 568 502

6 Actual data Long-term monthly
average
(Hatton’s pan factor)

Same for each month Runoff coefficient 540 962

Daily simulation

7 Actual data Actual data Same for each month Runoff coefficient 591 188

8 Actual data Actual data Same for each month Conceptual storages 587 515

9 Actual data Actual data Lower in wet season Conceptual storages 593 812

Constant ventilation loss versus smaller ventilation loss in the wet season
Runs 1 and 4 differ only in the ventilation loss calculations. Run 1 uses a constant ventilation
loss throughout the year (as in the Kinhill-ERA approach) while Run 4 considers that the
ventilation loss is smaller in the wet season compared to the dry season (as described in
section 2.6). The biggest storage simulated in Run 4 would be greater than that in Run 1
because of the smaller potential loss available in the wet months when higher runoff inflows
occur. Table 5.1 shows that in this 26-year simulation, the consideration of smaller
ventilation loss in the wet season led to a 1.2% greater storage capacity compared to the use
of a constant ventilation throughout the year.

Pan evaporation coefficients
Run 1 uses the pan evaporation factors in table 2.3, while Run 5 uses the pan evaporation
factors given by Hatton (1997) and adopted by Kinhill-ERA. The factors are the same except
for two months. The simulations in section 4 uses pan evaporation factors of 0.66 and 0.77
for October and April respectively, while the Kinhill-ERA simulations use higher factors of
0.75 and 0.85 in the two months respectively. For this 26-year simulation, the storage
capacity estimated using the smaller pan evaporation factors is 2.5% higher (see table 5.1).

Daily versus monthly simulation
Runs 1 and 7 differ only in the simulation time step. The use of a bigger time step would give
a smaller storage capacity estimate because of the averaging over a longer period (for
example, the storage may be overtopped because of a high rainfall-runoff inflow on a
particular day, but a simulation over a monthly time step may not show this because there
may be sufficient losses over the month to balance this high inflow). In this 26-year
simulation, the biggest storage estimate is 1.4% greater in the daily simulation compared to
the monthly simulation (see table 5.1).
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Runoff coefficient versus conceptual rainfall-runoff modelling
Runs 7 and 8 are the same except for the method used to estimate surface runoff. In Run 7,
surface runoff is estimate as a runoff coefficient multiplied by rainfall while in Run 8, surface
runoff is simulated using a conceptual rainfall-runoff model, with the soil capacity parameter
optimised to produce the same total runoff as in Run 7 (see section 2.1). Table 5.1 indicates
that there is less than 1% difference in the storage capacities estimated in Runs 7 and 8.

This approach versus Kinhill-ERA approach
Although there is only a small difference between each of the different considerations, there
can be quite a large difference in the storage capacity estimate when all the differences
between the approach used here and the Kinhill-ERA approach are taken into account. The
storage capacity estimate in Run 9, where the approach described in sections 2 to 4 is used, is
almost 10% greater than the storage capacity estimate in Run 6, where the Kinhill-ERA
method and considerations are used within the framework of the storage water balance
simulation described in this report. The results here only provide some indication of the
sensitivity of the storage capacity estimate to various parameters and considerations, and the
10% difference between the two approaches will be different for other simulations,
particularly the extremes. In addition, the differences in the basic methodology of the two
approaches (ie, many annual rainfall sequences are used here to mimic the climate
possibilities, while the Kinhill-ERA method combines the wettest two or three year sequence
with the average climate, see section 5.2) will also result in the Kinhill-ERA storage capacity
estimate being smaller than the estimate derived here.
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Appendix A  The DMM algorithm for stochastic
generation of rainfall series

The DMM (daily and monthly mixed) algorithm previously developed by (Wang & Nathan
1999) is used in this project. The main advantages of the DMM algorithm are that it has a
small number of parameters and is capable of reproducing key characteristic statistics
simultaneously at daily, monthly and annual levels.

In the following, we first describe a ‘basic’ algorithm which forms the basis of the DMM
algorithm and then describe the DMM algorithm itself.

A ‘Basic’ algorithm
Daily rainfall generation algorithms usually consist of two components: one to simulate the
rainfall occurrence to provide a sequence of dry and wet days, and one to simulate the rainfall
amounts in wet days.

One of the widely used models for simulating rainfall occurrence is the two-state first-order
Markov chain. A day can be either dry or wet (two states). The probability of being wet in
any day depends only on whether the previous day was wet or dry (first order). Thus, the
occurrence of rainfall can be described by two transitional probabilities: D|Wp , the

conditional probability of a wet day given that the previous day was dry; pW|W , the

conditional probability of a wet day given that the previous day was wet. The unconditional
probability of a wet day can be shown to be

π =
−

p

p p
W|D

W|D W|W1+
(A1)

One of the widely used models for simulating the rainfall amount, x , on a wet day is the
gamma distribution. The density function of the gamma distribution is given by

f x
x x

( )
( / ) exp( / )

( )
=

−−β β
β α

α 1

Γ
(A2)

where α  is a shape parameter and β  a scale parameter. It is assumed that the rainfall

amounts in different wet days are unrelated. The mean and variance of the gamma
distribution are respectively

µ αβ( )x = (A3)

22 )( αβ=σ x (A4)

Seasonal variation is modelled by allowing the model parameters to vary with each of the 12
months.

Given the two-state first-order Markov chain model for rainfall occurrence and the gamma
distribution model for daily rainfall amount, the rainfall total, X, over a month of N  days has
an expected value

µ παβ( )X N= (A5)

and variance
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There are a total of four parameters that need to be estimated for each of the 12 month. These
are the two transitional probabilities pW|D and pW|W  used to define the first order Markov

chain for modelling rainfall occurrence, and the shape and location parameters α  and β
used to define the gamma distribution for modelling rainfall amount in a wet day. The general
approach is to estimate these parameters by using daily statistics: pW|D  and pW|W  are found

by directly counting number of the wet and dry day sequences and taking appropriate ratios;
α  and β  are found from the mean and standard deviation of rainfall amounts in wet days by

using (A3) and (A4). The problem with such an approach is that the generated rainfall data
often do not reproduce the observed standard deviation, )(Xσ , of the monthly rainfall total.

While one may use (A5) and (A6) to estimate α  and β  to force the matching of the standard

deviation of the monthly rainfall total, the generated rainfall data often do not reproduce the
observed standard deviation, )(xσ , of the daily rainfall amounts.

In addition, the basic algorithm does not consider the persistence of monthly rainfall total. As
a result, the basic algorithm would often be unable to simulate the prolonged dry and wet
spells and produce lower than observed coefficient of variation of annual rainfall total.

The DMM algorithm
The DMM algorithm was developed (Wang and Nathan, 1999) to overcome the problem that
the ‘basic’ algorithm is unable to reproduce key statistical characteristics simultaneously at
daily, monthly and annual levels and, at the same time, to retain the simplicity of the ‘basic’
algorithm. The DMM algorithm involves the following steps:

(a) For month i , generate a sequence of wet and dry days for the whole month using a two-
state first-order Markov chain with transitional probabilities, D|Wp̂  and $pW|W , which are

estimated from the countings of dry-wet and wet-wet day sequences.

(b) For any wet day in that month, generate rainfall amount x d  from a gamma distribution

with parameters $α d  and $β d  which are estimated from the mean and variance of daily

rainfall amounts by using (A3) and (A4).

(c) For the same wet day, generate, using exactly the same cumulative probability as in step

(b), a twin rainfall amount x m  also from a gamma distribution but with parameters $α m

and $β m  which are estimated from the mean and variance of monthly rainfall total by

using (A5) and (A6).

(d) Manipulate the monthly total of the daily rainfall generated in step (c), ∑= m
i xX

~
, to

produce a new monthly total Xi  by using the following first-order autoregressive

equation:
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The subscripts i-1 and i in (A7) denote the previous and current months respectively. The
lag-1 serial correlation ρ  may vary with month and is estimated from monthly rainfall

data.
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(e) Produce a new daily rainfall series x  for that month by multiplying all x d  by a constant

( X xi
d/ ∑ ) (A8)

To recast the algorithm, Steps (a) and (b) generate a rainfall series that preserves the daily
rainfall characteristics. Steps (a) and (c) generate a rainfall series that preserves the mean and
standard deviation of monthly rainfall total. Step (d) modifies the monthly rainfall total
produced in Step (c) to simulate persistence in monthly rainfall. Step (e) modifies the daily
rainfall series produced in Step (b) so that it has the ‘correct’ monthly characteristics.

The final daily rainfall series preserves exactly the mean, standard deviation, and lag-1
autocorrelation coefficient of the monthly rainfall total. How well the final daily rainfall
series preserve the daily statistics depends on the degree of adjustment required in Step (e) to
the daily rainfall series produced in Step (b) that already preserves exactly the daily rainfall
statistics. If the degree of adjustment is small, we would expect that the final adjusted daily
rainfall series would preserve reasonably well the daily statistics.

The DMM algorithm was specifically designed to minimize the adjustment required in
Step (e). The core of the design is to generate two daily rainfall series which closely resemble
each other, the first reproducing daily statistics and the second reproducing monthly
statistics, and subsequently use the second series (after incorporation of autocorrelation in
monthly rainfall) to adjust the first. The two daily rainfall series have an identical wet and dry
day sequence as produced in Step (a). In generating the rainfall amounts for a wet day, the
algorithm uses the same non-exceedance probability for both series so that a high rainfall
amount in the first series will correspond to a high rainfall amount in the second series, and
vice versa. Thus, the two daily rainfall series resemble each other closely. This leads to small
adjustment necessary in Step (e).

Note that when obtaining $α d  and $β d  in Step (b), the sample estimate of σ 2 ( )x  in equation

(A4) should be adjusted to sample estimate of σ σ π2 2 2( ) ( ) / ( )x X N−  to remove the

variance in daily rainfall that has already been accounted for by the inter-annual variation of
monthly rainfall total.

The algorithm requires, for each month, sample estimates of two transitional probabilities,
mean and variance of rainfall amount on a wet day, and variance of monthly rainfall total,
and autocorrelation coefficient of monthly rainfall total. The mean of monthly rainfall total is
not another independent statistic as it can be found from the two transitional probabilities, the
mean rainfall amount on a wet day, and the number of days in a month. Thus, the algorithm
has in total 72 parameters. The number of parameters may be reduced, if necessary, by using
a Fourier series approximation to the variation of the parameters with month.



26

Appendix B  An Algorithm for stochastic generation of
monthly evaporation

A simple regression model is used for simulating  monthly evaporation. The model
reproduces the mean, standard deviation, lag-1 and lag-2 autocorrelation of monthly
evaporation, and cross correlation between monthly evaporation and rainfall. The model is
given by
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where subscripts i, i-1, i-2 denote current month, last month, the month before last month
respectively; E and R are monthly evaporation and rainfall respectively; coefficients a, b, c,
and d are found by regression; e is the standard deviation of regression residues; ε  is a
standard normal variate. All the coefficients are found by regression.


